|
2#

楼主 |
发表于 2008-9-11 13:45:20
|
只看该作者
Razzmatazz aside, the LHC is an awesome machine. When it is running at full throttle, the protons going round it will be travelling within 30cm a second of the speed of light. That speed, beyond which it is impossible to accelerate, is 299,792km a second. The power of accelerators has risen more than a thousandfold since the 1960s, and they have come even further since the one of the first cyclotrons was tested by Ernest Lawrence at the University of California at Berkeley in 1931. That device was a mere 30cm in circumference, and gave its protons a hundred-millionth of the energy that the LHC imparts. But the basic idea behind both devices is the same.
A combination of electricity and magnetism accelerates the protons and thus endows them with energy. They are then brought to a sudden halt by a collision with something else, at which point the energy is converted into mass, creating new particles, according to Einstein's well-known equation, E=mc². The main difference, apart from the scale of the machines, is that the cyclotron fired its particles into a static target whereas the LHC uses contra-rotating beams to achieve head-on collisions.
The real news, of course, will come when CERN actually finds something. But then, too, the question of “when” will be moot. Scientific discoveries are only occasionally eureka moments. More often, the data have to be collected, reviewed, analysed statistically, found wanting, collected again and re-analysed. Eventually, if all has gone well, a clear result will emerge. It then has to be written up, reviewed by critical peers and, if it passes review, published in a scientific journal.
That process is likely to be shorter for results from the LHC than it is for most scientific papers because the convention in physics is, increasingly, to do without the peer review and post papers online. Then all and sundry can tear them to shreds if they do not measure up. Moreover, promising but unconfirmed results are likely to leak—particularly if they concern the Higgs boson, the LHC’s famous first target. Scientists can be as garrulous as politicians when propping up a bar.
The Higgs—which is required by theory in order to explain the existence of mass—has become such a cliché that it will be a relief when it does turn up. Then effort can be directed towards other things, such as probing the mysteries of gravity, doubling the number of known particles through a mechanism called supersymmetry and even generating minuscule black holes. Indeed, if the boson’s properties obey the strictures laid down for it by Peter Higgs and the other physicists who predicted it way back in the 1960s, the moment of discovery may turn out to be something of an anticlimax. Assuming that moment can be defined, of course. |
|