|
考查要点:
一、事件与概型
1. 要求考生熟练掌握随机现象与统计规律性,样本空间与事件,
2. 要求考生熟练掌握古典概率、几何概率的求解,
二、条件概率与统计独立性
1. 要求考生熟练掌握条件概率,全概率公式,贝叶斯公式。并求解相关问题的概率。
2. 要求考生熟练掌握独立性的概念。
三、随机变量与分布函数
1. 要求考生熟练掌握随机变量与其分布函数,分布律或密度函数概念及其基本使用技巧。
2. 要求考生熟练了解随机变量函数的分布若干实例。学会正态分布,泊松分布、二项分布等基本实例的有关知识。
四、数字特征与特征函数
1.要求考生熟练掌握随机变量的数字特征及特征函数概念及技巧。
2.要求考生熟练掌握随机变量的数字特征的计算。
五、极限定理
要求考生了解中心极限定理,大数定律,及随机变量序列的收敛性方面的知识.
考试总分:150分 考试时间:3小时 考试方式:笔试
考试题型: 计算题(120分)
证明题(30分)
参考书目(包括书名、作者、、出版社、出版时间):
主要参考书:
1、概率论,复旦大学编写 高等教育出版社,1987年 |
|