|
第一章 实数集与函数
一.考核知识点
1.实数集的性质
2.确界定义和确界原理
3.函数的概念及表示法,分段函数,基本初等函数的性质及其图形,初等函数
二.考核要求
(一) 实数集的性质
1.熟练掌握:(1)实数及其性质;(2)绝对值与不等式。
2.深刻理解:(1)实数有序性,大小关系的传递性,稠密性,阿基米德性,实数集对四则运算的封闭性以及实数集与数轴上的点的一一对应关系;(2)绝对值的定义及性质。
3.简单应用:(1)会比较实数的大小,能在数轴上表示不等式的解;(2)会利用绝对值的性质证明简单的不等式。
4.综合应用:会利用实数的性质和绝对值的性质证明有关的不等式,会解简单的不等式。
(二)确界定义和确界原理
1.熟练掌握:(1)区间与邻域;(2)有界集、无界集与确界原理。
2.深刻理解:(1)区间与邻域的定义几表示法;(2)确界的定义及确界原理。
3.简单应用:用区间表示不等式的解,证明数集的的有界性,求数集的上、下确界。
4.综合应用:会用确界的定义证明某个实数是某数集的上确界(或下确界),证明某数集无界。
(三)函数的概念
1.熟练掌握:(1)函数的定义;(2)函数的表示法;(3)函数的四则运算;(4)复合函数;(5)反函数;(6)初等函数。
2.深刻理解:(1)函数概念的两大要素;(2)分段函数,掌握整数部分函数,小数部分函数,符号函数,狄利克雷和黎曼函数;(3)函数能够进行四则运算的条件;(4)复合函数中内函数的值域与外函数的定义域的关系;(5)反函数存在的条件。
3.简单应用:会求函数的定义域、值域,比较几个函数的大小,会求分段函数和复合函数的表达式,能熟练地描绘六类基本初等函数的图象。
4.综合应用:作简单的复合函数的图象,求函数的反函数,证明有关的不等式,会建立简单应用问题的函数关系。
(四)具有某些特性的函数
1.熟练掌握:(1)有界函数;(2)单调函数;(3)奇函数和偶函数;(4)周期函数。
2.深刻理解:(1)有界函数和无界函数的定义;(2)单调函数的定义及其图象的性质;(3)奇函数和偶函数的定义及其图象的性质;(4)周期函数的定义及其图象的性质。。
3.简单应用:(1)会求函数的上下界,判断无界函数;(2)判断函数的单调性;(3)判断周期函数;(4)判断函数的奇偶性。
4.综合应用:利用函数的各种特性解决简单的应用问题。
第二章 数列极限
一.考核知识点
1.数列极限的定义
2.收敛数列的性质
3.数列极限存在的条件
二.考核要求
(一) 数列极限的定义
1.熟练掌握:数列的敛散性概念,数列极限的 定义,数列极限的几何意义。
2.深刻理解:数列极限的“ 定义”的逻辑结构,深刻理解 的任意性, 的相应性;用“ 定义”证明数列的极限的表述方法; “ 定义”的否定说法。
3.简单应用:能够通过观察法初步判断数列的敛散性。
4.综合应用:会用“ 语言”证明数列的极限存在。
(二) 收敛数列的性质
1.熟练掌握:数列极限的唯一性,有界性,收敛数列的保号性,保不等式性,迫敛性,数列极限的四则运算法则,数列子列的概念。
2.深刻理解:收敛数列诸性质的证明。
3.简单应用:运用收敛数列的四则运算法则计算数列的极限。
4.综合应用:运用数列极限的唯一性,收敛数列的有界性、保号性,数列极限的迫敛性等证明数列的各种性质,判断发散数列。
(三) 数列极限存在的条件
1.熟练掌握:(1)单调有界原理;(2)柯西收敛准则。
2.深刻理解:单调有界原理和柯西收敛准则的实质及其否定命题,重要极限 的证明方法。
3.简单应用:会用单调有界原理证明某些极限的存在性。
4.综合应用:会用单调有界原理和柯西收敛准则证明某些极限问题,会用柯西收敛准则的否定命题证明数列发散。
第三章 函数极限
一.考核知识点
1.函数极限的定义
2.函数极限的性质
3.函数极限存在的条件
4.两个重要的极限
5.无穷大量与无穷小量
二.考核要求
(一) 函数极限的定义
1.熟练掌握:(1) 时函数极限的定义;(2) 时函数极限的定义。
2.深刻理解:
(1) 的 “ε-x定义”的逻辑结构,深刻理解 的任意性, x的相应性;用“ε-x定义”证明函数极限的表述方法; “ε-x定义”的否定说法。(2) 的 “ε-δ定义”的逻辑结构,深刻理解 的任意性, δ的相应性;用“ε-δ定义”证明函数极限的表述方法; 单侧极限和极限 存在的充要条件;“ε-δ定义”的否定说法。
3.简单应用:会用“ 的ε-x定义” 和“ 的ε-δ定义”证明简单函数的极限。
4.综合应用:会用“ 的ε-x定义” 和“ 的ε-δ定义”等分析语言证明一般的函数极限问题;用极限存在的充要条件证明极限不存在。
(二)函数极限的性质
1.熟练掌握:函数极限的唯一性,有极限的函数的局部有界性、局部保号性、保不等式性,函数极限的迫敛性,函数极限的四则运算法则。
2.深刻理解:函数极限诸性质的证明。
3.简单应用:运用函数极限的四则运算法则计算函数的极限。
4.综合应用:运用函数极限的唯一性,局部有界性、局部保号性,函数极限的迫敛性等证明函数的各种性质。
(三) 函数极限存在的条件
1.熟练掌握:(1)归结原则;(2)柯西收敛准则。
2.深刻理解:归结原则和的实质。
3.简单应用:会用归结原则证明函数的极限不存在,用柯西收敛准则证明函数极限存在。
4.综合应用:用柯西收敛准则的否定命题证明函数极限不存在。
(四) 两个重要的极限
1.熟练掌握: 。
2.深刻理解:两个重要极限的证明。
3.简单应用:利用两个重要极限求极限的方法。
4.综合应用:综合用利用归结原则和两个重要极限求极限的方法。
(五) 无穷小量与无穷大量
1.熟练掌握:无穷小量,无穷大量。
2.深刻理解:无穷小量和无穷大量的性质和关系,无穷小量的比较。
3.简单应用:无穷小量的比较方法,用无穷小量和无穷大量求极限。
4.综合应用:用等价无穷小求极限,求曲线的渐近线。
第四章 函数的连续性
一.考核知识点
1.连续性概念
2.连续函数的性质
3.初等函数的连续性
二.考核要求
(一) 连续性概念
1.熟练掌握:函数在一点的连续性,区间上的连续函数,间断点及其分类。
2.深刻理解:函数在一点左、右连续的概念,函数在一点的连续的充要条件。
3.简单应用:用定义证明函数在一点连续。
4.综合应用:利用函数在一点的连续的充要条件证明函数在一点连续。
(二) 连续函数的性质
1.熟练掌握:连续函数的局部性质,闭区间上连续函数的基本性质,反函数的连续性,复合函数的连续性。
2.深刻理解:一致连续性。
3.简单应用:用连续函数求极限。
4.综合应用:证明函数的一致连续性,利用闭区间上连续函数的基本性质论证某些问题。
(三) 初等函数的连续性
1.熟练掌握:基本初等函数的连续性。
2.深刻理解:初等函数在其定义的区间内连续。
3.简单应用:证明基本初等函数在定义域内连续,判断初等函数间断点的类型。
4.综合应用:证明一般初等函数在定义域内连续,判断分段函数间断点的类型。
第五章 导数与微分
一.考核知识点
1.导数的概念
2.求导法则
3.参变量函数的导数
4.高阶导数
5.微分
二.考核要求
(一) 导数的概念
1.熟练掌握:导数的定义,导函数。
2.深刻理解:函数在一点的变化率,左、右导数,导数的几何意义,导函数的介值性,函数可导与连续的关系。
3.简单应用:会求函数的平均变化率,确定曲线切线的斜率,求函数的稳定点。
4.综合应用:求分段函数的导数,运用导数概念证明曲线的某些几何性质。
(二)求导法则
1.熟练掌握:导数的四则运算,反函数的导数,复合导数的导数,基本求导法则与公式。
2.深刻理解:导数的四则运算、反函数的导数、复合导数的导数、基本求导法则与公式的证明。
3.简单应用:会用各种求导法则计算初等函数的导数。
4.综合应用:综合运用各种求导法则计算函数的导数。
(二)参变量函数的导数
1.熟练掌握:参变量函数的导数的定义。
2.深刻理解:参变量函数的导数的几何意义。
3.简单应用:会求参变量函数所确定函数的导数。
4.综合应用:利用参变量函数的导数证明曲线的某些几何性质。
(三)高阶导数
1.熟练掌握:高阶导数的定义。
2.深刻理解:高阶导函数的概念。
3.简单应用:高阶导数的计算。
4.综合应用:利用莱布尼茨公式计算高阶导数,计算参变量函数的高阶导数。
(四)微分
1.熟练掌握:微分概念。
2.深刻理解:微分的几何意义,导数与微分的关系,一阶微分形式的不变性。
3.简单应用:微分的计算。
4.综合应用:高阶微分的计算,微分在近似计算中的应用。
第六章 微分中值定理及其应用
一.考核知识点
1.拉格朗日定理和函数单调性
2.柯西中值定理和不定式极限
3.泰勒公式
4.函数的极值与最值
5.函数的凸性与拐点,函数图象的讨论
二.考核要求
(一) 拉格朗日定理和函数单调性
1.熟练掌握:罗尔中值定理,拉格朗日中值定理,函数单调性。
2.深刻理解:罗尔中值定理和拉格朗日中值定理的条件与结论、证明方法,它们的几何意义。
3.简单应用:判断函数是否满足罗尔中值定理和拉格朗日中值定理,会求简单函数的中值点。
4.综合应用:用拉格朗日中值定理证明函数的单调性,利用拉格朗日中值定理和函数的单调性,证明某些恒等式和不等式。
(二)柯西中值定理和不定式极限
1.熟练掌握:柯西中值定理, 不定式的极限。
2.深刻理解:柯西中值定理的证明方法,求不定式极限的方法。
3.简单应用:求不定式的极限。
4.综合应用:用柯西中值定理证明某些带中值的等式。
(三)泰勒公式
1.熟练掌握:泰勒定理,泰勒公式,麦克劳林公式。
2.深刻理解:泰勒定理的实质,泰勒公式与拉格朗日中值定理的关系。
3.简单应用:利用泰勒定理展开六种函数的麦克劳林公式,余项估计。
4.综合应用:利用泰勒公式和等价无穷小变换计算极限,泰勒公式在近似计算上的应用。
(四)函数的极值与最大〔小〕值
1.熟练掌握:函数的极值与最值,取极值的必要条件,驻点。
2.深刻理解:判断极值的两个充分条件。
3.简单应用:会求函数极值与最值。
4.综合应用:证明某些不等式,解决求最值的应用问题。
(五)函数的凸性与拐点,函数图象的讨论
1.熟练掌握:函数图象的凸性与拐点,函数图象的性态。
2.深刻理解:凸函数,函数为凸函数的充要条件,曲线的渐近线。
3.简单应用:判断函数图象的凸性与拐点,渐近线的求法,函数图象的性态的讨论,简单函数图象的描绘。
4.综合应用:利用函数的凸性证明不等式。
第七章 实数的完备性
一.考核知识点
1. 关于实数集完备性的基本定理
2.闭区间上连续函数性质的证明
3.上极限和下极限
二.考核要求
(一)关于实数集完备性的基本定理
1.熟练掌握:实数集完备性的意义,实数集完备性的几个基本定理。
2.深刻理解:区间套定理、柯西收敛准则、聚点定理、有限覆盖定理的条件和结论,它们的证明方法,理解有理数集不满足完备性定理的原因
3.简单应用:会求数集的聚点、确界。
4.综合应用:实数集完备性的几个基本定理的等价性证明。
(二)闭区间上连续函数性质的证明
1.熟练掌握:闭区间上连续函数的有界性,有最大、最小值性,介值性和一致连续性。
2.深刻理解:闭区间上连续函数性质的证明思路和方法。
第八章 不定积分
一.考核知识点
1.不定积分概念与基本积分公式
2.换元积分法与分部积分法
3.有理函数和可化为有理函数的不定积分
二.考核要求
(一)不定积分概念与基本积分公式
1.熟练掌握:原函数、不定积分及二者的区别,基本积分表。
2.深刻理解:原函数与导数的关系,不定积分的基本性质,不定积分的几何意义。
3.简单应用:会求简单初等函数的不定积分。
4.综合应用:根据不定积分的几何意义求曲线方程。
(二)换元积分法与分部积分法
1.熟练掌握:换元积分法,分部积分法。
2.深刻理解:换元积分法与复合函数求导法则的关系,分部积分法与乘积求导法的关系。
3.简单应用:会用换元积分法与分部积分法计算简单函数的不定积分。
4.综合应用:综合运用换元积分法与分部积分法计算某些函数的不定积分,证明某些递推公式。
(三)有理函数和可化为有理函数的不定积分
1.熟练掌握:有理函数、三角函数有理式和某些无理函数的不定积分。
2.深刻理解:以上各种不定积分的计算步骤。
3.应用:会算有理函数、三角函数有理式和某些无理函数的不定积分。
第九章 定积分
一.考核知识点
1.定积分概念和性质
2.可积条件
3.微积分学基本定理·定积分的计算
二.考核要求
(一)定积分概念和性质
1.熟练掌握:定积分的实际背景,黎曼和,定积分的性质。
2.深刻理解:构造积分和的方法,定积分及其性质的几何意义。
3.简单应用:用定积分定义计算简单函数的定积分,利用定积分的性质比较积分的大小,估计积分值。
4.综合应用:用定积分定义计算某些复杂和式的极限,利用定积分的性质证明不等式,论证函数的某些性质。
(二) 可积条件
1.熟练掌握:可积的必要条件和充分条件,可积函数类。
2.深刻理解:达布和,可积准则及其证明方法。
3.简单应用:判断函数的可积性。
4.综合应用:论证可积函数的某些性质。
(五)微积分学基本定理和定积分的计算
1.熟练掌握:变限定积分所确定的函数及其性质,微积分学基本定理。
2.深刻理解:微积分学基本定理的实质,原函数的存在性。
3.简单应用:用牛顿——莱布尼茨公式计算定积分,用换元积分法与分部积分法计算定积分。
4.综合应用:综合运用各种方法计算定积分。
第十章 定积分的应用
一.考核知识点:平面图形的面积,由平行截面面积求体积,平面曲线的弧长与曲率,旋转曲面的面积,定积分在物理中的某些应用
二.考核要求
1.熟练掌握: 用定积分表达和计算一些几何量和物理量。
2.深刻理解:定积分的应用的实质—微元法。
3.应用:计算平面图形的面积,由平行截面面积求体积,平面曲线的弧长与曲率,旋转曲面的面积,液体静压力、引力、功与平均功率。
第十一章 反常积分
一.考核知识点
1.反常积分概念
2.无穷积分的性质与收敛判别
3.瑕积分的性质与收敛判别
二.考核要求
(一)反常积分概念
1.熟练掌握:两类反常积分的定义。
2.深刻理解:反常积分即变限定积分的极限。
(二)无穷积分的性质与收敛判别
1.熟练掌握:无穷积分的性质,条件收敛,绝对收敛。
2.深刻理解:比较判别法,狄利克雷判别法,阿贝尔判别法。
3.简单应用:计算无穷积分,判别无穷积分的收敛性。
4.综合应用:运用无穷积分的性质和判别法论证某些问题。
(三)瑕积分的性质与收敛判别
1.熟练掌握:瑕积分的性质,条件收敛,绝对收敛。
2.深刻理解:比较判别法。
3.简单应用:计算,瑕积分,判别瑕积分的收敛性。
4.综合应用:运用瑕积分的性质和判别法论证某些问题。
第十二章 数项级数
一.考核知识点
1.级数的收敛性
2.正项级数和一般项级数
二.考核要求
(一)级数的收敛性
1.熟练掌握:数项级数的定义。
2.深刻理解:级数收敛、发散的概念,收敛级数的性质,级数收敛的柯西准则。
3.简单应用:判断级数的收敛和发散。
4.综合应用:应用柯西准则讨论级数的敛散性。
(二) 正项级数
1.熟练掌握:正项级数收敛的必要条件,正项级数的比较原则。
2.深刻理解:正项级数收敛比式判别法,根式判别法和积分判别法。
3.简单应用:判别正项级数的收敛性。
4.综合应用:运用正项级数收敛的必要条件,比较原则和几个判别法等论证一些问题。
(三)一般项级数
1.熟练掌握:交错级数的概念,条件收敛与绝对收敛的概念及关系,莱布尼茨判别法。
2.深刻理解:绝对收敛级数的性质,狄利克雷判别法,阿贝尔判别法。
3.简单应用:判别一般项级数的收敛性。
4.综合应用:绝对收敛级数的运算及重排。
第十三章 函数列与函数项级数
一.考核知识点
1.一致收敛性
2.一致收敛函数列与函数项级数的性质
二.考核要求
(一)一致收敛性
1.熟练掌握:函数列与函数项级数的一致收敛性的定义,一致收敛的充要条件。
2.深刻理解:一致收敛定义的否定叙述,一致收敛的柯西准则,函数列与函数项级数一致收敛性的判别法
3.应用:会用一致收敛性的定义或判别法判别函数列的一致收敛性,用优级数判别法,狄利克雷判别法,阿贝尔判别法判别一些函数级数的一致收敛性。
(二)一致收敛函数列与函数项级数的性质
1.熟练掌握:一致收敛函数列的极限函数与函数项级数的和函数。
2.深刻理解:连续性,可积性,可微性定理。
3.简单应用:由定理讨论函数项级数的和函数的连续性,可积性,可微性。
4.综合应用:由定理证明和函数的分析性质,计算函数项级数的积分。
第十四章 幂级数
一.考核知识点
1.幂级数
2. 函数的幂级数展开式
二.考核要求
(一)幂级数
1.熟练掌握: 幂级数的定义。
2.深刻理解:幂级数的性质。
3.应用:幂级数的计算,求幂级数的收敛半径。
(二)函数的幂级数展开式
1.熟练掌握:泰勒级数定义。
2.深刻理解:泰勒级数和马克劳林级数。
3.简单应用:六个常用的初等函数的马克劳林级数。
4.综合应用:把一些简单的函数展成泰勒级数或马克劳林级数。
第十五章 傅立叶级数
一.考核知识点
1.傅立叶级数
2.以2l为周期的函数的展开式
二.考核要求
(一)傅立叶级数
1.熟练掌握:傅立叶级数的性质。
2.深刻理解:以2l为周期函数的的傅立叶级数的性质。
3.简单应用:傅立叶级数收敛定理。
4.综合应用:把函数展开成傅立叶级数。
(二) 以2l为周期的函数的展开式和收敛定理的证明
1.熟练掌握:正、余弦函数基本性质。
2.深刻理解:2l为周期的函数的性质。收敛定理及证明。
3.简单应用:以2π为周期的傅立叶级数的展开式。
4.综合应用:求函数的傅立叶级数展开式。
第十六章 多元函数的极限与连续
一.考核知识点
1.平面点集与多元函数
2.二元函数的极限和连续性
二.考核要求
(一)平面点集与多元函数
1.熟练掌握:二元函数和二元函数极限的定义。弄清二重极限与累次极限的区别极其联系。
2.深刻理解:平面点集的一些概念:邻域、内点、界点、聚点、开区域、闭区域、有界区域、无界区域等。完备性定理。
3.简单应用: 求函数的定义域,画定义域的图形,说明何种点集。
4.综合应用:判断平面点集的的性质,及其平面点集的聚点与界点。
(二)二元函数的极限和连续性
1.熟练掌握:二元函数的极限和连续性的概念。
2.深刻理解:累次极限和二元连续函数的性质。
3.简单应用:求累次极限,运用连续性定理。
4.综合应用:会求函数的极限。讨论函数的连续性。
第十七章 多元函数微分学
一.考核知识点
1.可微性
2.复合函数微分法
3.方向导数与梯度及泰勒公式与极值问题
二.考核要求
(一)可微性
1.熟练掌握:可微与全微分定义。可微性几何意义及应用。
2.深刻理解:可微性条件。
3.简单应用:可微性充分条件。
4.综合应用:求函数的导数。
(二) 复合函数微分法
1.熟练掌握:复合函数的有关定义。
2.深刻理解:复合函数的全微分
3.简单应用:复合函数的求导法则。
4.综合应用:求函数的偏导数或导数。
(三)方向导数与梯度及泰勒公式与极值问题
1.熟练掌握:方向导数与梯度的定义。
2.深刻理解:中值定理和极值充分条件。
3.简单应用:熟练计算偏导数和高阶偏导数。
4.综合应用:运用泰勒公式解决极值问题。
第十八章 隐函数定理及其应用
一.考核知识点
1.隐函数及隐函数组
2.几何应用和条件极值
二.考核要求
(一)隐函数及隐函数组
1.熟练掌握:隐函数及隐函数组的概念,反函数组与坐标变换。
2.深刻理解:隐函数定理和隐函数组的定理。
3.简单应用:隐函数存在性的条件分析。
4.综合应用: 对隐函数求导。
(二) 几何应用和条件极值
1.熟练掌握:平面曲线、空间曲线的切线于法平面,曲面的切平面与法线。
2.深刻理解:条件极值。
3.简单应用:拉格朗日函数。
4.综合应用: 应用拉格朗日乘数法求函数的条件极值。
第十九章 含参量积分
一.考核知识点
1.含参量正常积分
2.含参量反常积分与欧拉积分
二.考核要求
(一)含参量正常积分
1.熟练掌握:含参量积分的定义。
2.深刻理解:含参量积分的连续性、可微性、可积性。
3.简单应用:累次积分。
4.综合应用:求函数的积分。
(二)含参量反常积分与欧拉积分
1.熟练掌握:欧拉积分的定义。
2.深刻理解:含参量反常积分的性质。γ函数与β函数。
3.简单应用:一致收敛及其判别法,会用欧拉积分。
4.综合应用:证明一致收敛性,计算γ函数与β函数。
第二十章 曲线积分
一.考核知识点
1.第一型曲线积分
2.第二型曲线积分
二.考核要求
(一)第一型曲线积分
1.熟练掌握:第一型曲线积分的定义。
2.深刻理解:第一型曲线积分的性质。
3.应用:第一型曲线积分的计算。
(二)第二型曲线积分
1.熟练掌握:第二型曲线积分的定义。
2.深刻理解:第二型曲线积分的性质,第二型曲线积分与第一型曲线积分的关系。
3.应用:第二型曲线积分的计算。
第二十一章 重积分
一.考核知识点
1.二重积分的概念及直角坐标系下二重积分的计算
2.格林公式?曲线积分与路线的无关性
3.二重积分的变量变换与三重积分
4.重积分的应用
二.考核要求
(一) 二重积分的概念及直角坐标系下二重积分的计算
1.熟练掌握:二重积分的概念极其存在性,平面图形的存在性。
2.深刻理解:二重积分的性质。二元函数的可积性定理。
3.简单应用:直角坐标系下二重积分的计算。
4.综合应用:计算二重积分及二重积分所围的区域。
(二) 格林公式?曲线积分与路线的无关性
1.熟练掌握:连通区域的概念,
2.深刻理解:格林公式,积分与路线的无关性定理。
3.简单应用:验证积分与路线无关并会求积分。
4.综合应用:应用格林公式计算曲线积分。
(三) 二重积分的变量变换与三重积分
1.熟练掌握: 三重积分的概念。
2.深刻理解:二重积分的可积函数类与性质,二重积分的变量变换公式与化三重积分为累次积分。
3.简单应用:用极坐标计算二重积分,会三重积分换元法。
4.综合应用:对积分进行极坐标变换并计算二重积分。计算三重积分及累次积分。
第二十二章 曲面积分
一.考核知识点
1.第一型曲面积分和第二型曲面积分
2.高斯公式与托克斯公式与场论初步
二.考核要求
(一)第一型曲面积分和第二型曲面积分
1.熟练掌握:第一型曲面积分和第二型曲面积分的定义及二者之间的关系。
2.深刻理解:第一型曲面积分和第二型曲面积分的物理背景。
3.简单应用:第一型曲面积分和第二型曲面积分的计算。
4.综合应用:用第一型曲面积分求重心、转动惯量。计算第二型曲面积分。
(二) 高斯公式与托克斯公式与场论初步
1.熟练掌握:高斯公式和斯托克斯公式的物理意义。场的概念。
2.深刻理解:高斯公式和斯托克斯公式及其证明过程,梯度场、散度场、旋度场。
3.简单应用:用高斯公式和斯托克斯公式计算曲面积分。
4.综合应用:会求全微分的原函数。
高等代数课程考试大纲
第一部分 多项式理论(一元多项式和多元多项式)
一元多项式
一、考核知识点
1、一元多项式
2、整除性与最大公因式
3、因式分解
4、复系数,实系数,有理系数多项式
二、考核要求
(一)一元多项式
1、熟练掌握:一元多项式及相关概念。
2、深刻理解:多项式的运算及与次数的关系。
3、简单应用:多项式的运算。
(二)整除性与最大公因式
1、熟练掌握:(1)多项式和整除及相关概念。(2)最大公因式及相关概念。
2、深刻理解:(1)整除的性质。(2)带余除法。(3)辗 转除法。(4)最大公因式的性质。(5)互素的性质。
3、简单应用:(1)掌握带余除法。(2)计算最大公因式。(3)使用整除性质,最大公因式的性质,互素的性质处理多项式问题。
(三)因式分解
1、熟练掌握:(1)不可约多项式概念。(2)最小公倍式概念。(3)重因式,根,重根等概念。
2、深刻理解:(1)唯一分解定理。(2)不可约多项式的性质。(3)导数与重因式的关系。(4)次数与根的个数的关系。
3、简单应用:利用因式分解理论处理多项式的相关问题。
(四)复系数,实系数,有理系数多项式
1、熟练掌握:(1)复系数,实系数不可约多项式及因式分解定理。(2)本原多项式。
2、深刻理解:(1)实系数多项式虚根特征。(2)本原多项式性质。(3)有理系数多项与整系数多项式在可约性上的关系。(4)艾森斯坦因判别法。(5)综合除法。(6)有理系数多项式的有理根的判定。
3、简单应用:应用复系数,实系数,有理系数多项式理论处理相关问题。
多元多项式
一、考核知识点
1、多元多项式
2、对称多项式
二、考核要求
(一)多元多项式
1、熟练掌握(1)多元多项式及相关概念。(2)多元多项式的运算。(3)多元多项式的几种排列方法。
2、深刻理解:多元多项式的几种排列方法。
3、简单应用:多元多项式的运算。
(二)对称多项式
1、熟练掌握:(1)对称多项式。(2)初等对称多项式。(3)根的判别式。
2、深刻理解:对称多项式基本定理。
3、简单应用:把对称多项式表成初等对称多项式的多项式。
第二部分 行列式
一、考核知识点
1、映射与变换
2、置换的奇偶性
3、行列式
4、克拉默法则
二、考核要求
(一)映射与变换
1、熟练掌握:映射,变换及相关概念。
2、深刻理解:映射的合成及运算律。
3、简单应用:判断具体映射的可逆性。
(二)置换的奇偶性
1、熟练掌握:置换奇偶性概念。
2、深刻理解:置换的表示方法。
3、简单应用:置换的运算,分解。
(三)行列式
1、熟练掌握:行列式的定义及相关概念。
2、深刻理解:行列式的性质。
3、简单应用:行列式的计算。
(四)克拉默法则
1、熟练掌握:克拉默法则内容。
2、深刻理解:克拉默法则的思想与证明。
3、简单应用:利用克拉默法则解线性方程组。
第三部分 线性方程组与线性子空间(第三章和第六章)
一、考核知识点
1、消元法
2、向量组的线性相关性
3、线性子空间
二、考核要求
(一)消元法
1、熟练掌握:(1)矩阵。(2)初等变换。(3)线性方程组的有关概念。
2、深刻理解:消元法的全过程。
3、简单应用:解线性方程组。
(二)向量组的线性相关性
1、熟练掌握:线性表示,线性相关,线性无关等基本概念。
2、深刻理解:线性相关性的相应结论。
3、简单应用:判定向量组的线性相关性。
(三)线性子空间
1、熟练掌握:(1)线性子空间。(2)基与维数。
2、深刻理解:基对子空间的意义。
3、简单应用:(1)判定是否子空间。(2)确定基和维数。
第四部分 矩阵
一、考核知识点
1、向量组与矩阵的秩
2、线性映射及矩阵
3、矩阵乘积的行列式与矩阵的逆
4、矩阵分块
5、初等矩阵
二、考核要求
(一)向量组与矩阵的秩
1、熟练掌握:(1)向量组的线性表示,等价,极大无关组,秩等概念。(2)矩阵的行秩,列秩,子式,秩等概念。
2、深刻理解:(1)与向量组的秩相关的一些结论。(2)与矩阵的秩相关的一些结论。
3、简单应用:(1)求向量组的极大无关组。(2)求向量组和矩阵的秩。(3)利用矩阵的秩判断线性方程组解的状况。
(二)矩阵乘积的行列式与矩阵的逆
1、熟练掌握:(1)退化,非退化,可逆,非可逆,伴随等关于矩阵的概念。(2)可逆矩阵的求逆公式。(3)关系式:|ab|=|a||b|。
2、深刻理解:矩阵可逆与线性变换可逆性的关系。
3、简单应用:计算可逆矩阵的逆矩阵。
(三)矩阵的分块
1、熟练掌握:(1)矩阵分块的概念。(2)分块对角矩阵的概念。
2、深刻理解:矩阵运算对分块的要求。
3、简单应用:(1)对矩阵进行分块运算。(2)分块矩阵的运算。
(四)初等矩阵
1、熟练掌握:初等方阵的定义。
2、深刻理解:初等方阵与初等变换的关系。
3、简单应用:(1)化矩阵为正规形。(2)用初等变换求可逆矩阵的逆矩阵。
第五部分 线性空间与欧几里得空间(第六章和第九章)
一、考核知识点
1、线性空间
2、欧几里得空间
二、考核要求
(一)线性空间
1、熟练掌握:(1)线性空间定义及性质。(2)子空间的和与直和的定义。(3)维数定理。(4)同构。
2、深刻理解:(1)线性空间定义中的八条公理。(2)直和的判定条件。
(3)简单应用:判断子空间的和是直和。
(二)欧几里得空间
1、熟练掌握:(1)欧几里得空间及其相关概念。(2)正交变换及正交矩阵的概念。
2、深刻理解:(1)施密特正交化方法。(2)正交变换的判定条件和性质。(3)正交矩阵的判定条件和性质。
3、简单应用:(1)把线性无关向量变为标准正交向量组。(2)判断线性变换的正交性。(3)判断矩阵的正交性。(4)掌握欧氏空间中向量的度量性质。
第六部分 线性变换
一、考核知识点
1、线性空间的基变换
2、线性变换的矩阵的化简
二、考核要求
(一)线性空间的基变换
1、熟练掌握:过渡矩阵,相似矩阵的概念。
2、深刻理解:基变换对坐标的影响和对线性变换矩阵的影响。
3、简单应用:(1)正确使用坐标变换公式。(2)掌握线性变换的矩阵受基变换的影响。
(二)线性映射及矩阵
1、熟练掌握:(1)线性映射。(2)线性映射的运算。(3)矩阵的运算。
2、深刻理解:(1)线性映射及矩阵的运算规律。(2)线性映射与矩阵的对应关系。
3、简单应用:(1)线性映射的运算和矩阵的运算。(2)处理相关矩阵的某些问题。
(三)线性变换矩阵的化简
1、熟练掌握:特征值,特征向量,特征多项式,不变子空间,特征子空间等概念。
2、深刻理解:线性变换的矩阵的化简思想与方法。
3、简单应用:(1)判断具体线性变换是否可以对角化。(2)处理有关特征值,特征向量,不变子空间的一些问题。
第七部分 二次型
一、考核知识点
1、二次型基本性质
2、二次型的标准形
3、正定二次型
二、考核要求
1、熟练掌握:二次型及相关概念。
2、深刻理解:二次型的化简。
3、简单应用:(1)化二次型为标准形。(2)判断具体实二次型的正定性。
第八部分 多项式矩阵
一、考核知识点
1、多项式矩阵
2、若尔当典范形理论
二、考核要求
(一)多项式矩阵
1、熟练掌握:(1)多项式矩阵。(2)初等变换与初等多项式矩阵。(3)多项式矩阵的正规形。
2、深刻理解:初等多项式矩阵的意义。
3、简单应用:化多项式矩阵为正规形。
(二)若尔当典范形理论
1、熟练掌握:(1)行列式因子。(2)不变因子。(3)初等因子。(4)矩阵的极小多项式。
2、深刻理解:(1)行列式因子,不变因子,初等因子之间的关系。(2)矩阵相似的判定条件。(3)极小多项式的性质。
3、简单应用:计算矩阵的若尔当典范形。 |
|