|
Aug 28th 2008
From The Economist print edition
Doctors may soon have a new diagnostic tool in their kit bags
Illustration by Stephen Jeffrey
SINCE time immemorial—or at least as far back as Hippocrates—novice physicians have been taught to smell patients’ breath for signs of illness. Though unpleasant for the doctor, it is a useful trick. The sweet smell of rotten apples, for instance, indicates diabetes. Liver disease, by contrast, often causes the breath to smell fishy. But the human nose cannot detect all the chemical changes brought about by disease. Science, therefore, seeks to smell what human doctors cannot. The aim is to create a diagnostic nose as discriminating as those of perfume mixers or wine buyers. Such a nose would, however, be sensitive not to life’s pleasures, but to its pains.
The idea of creating a diagnostic nose goes back to the 1970s. In that decade Linus Pauling, a Nobel-prize-winning chemist, performed the first serious scientific analysis of human breath. He used a technique called gas chromatography, which enables complex mixtures to be separated into their components, to detect some 250 volatile organic compounds in the air exhaled from lungs. Gas chromatography by itself, however, does not allow you to identify each component—it is merely a way of separating them. To make the identifications, you need to add a second step, called mass spectrometry. This, as its name suggests, works out the weight of the molecules in each component. Often, weight is enough by itself to identify a molecule. But if two molecules happen to have the same weight, they can be analysed by breaking them up into smaller, daughter molecules. These are almost certain to differ in weight.
Using gas chromatography and mass spectrometry, researchers have, over the years, identified more than 3,000 compounds that are regularly exhaled, excreted or exuded from the body. The search, now, is to understand how changes in the mixture of these compounds may indicate disease, and to find ways of recognising such changes routinely and robustly. |
|