|
3#

楼主 |
发表于 2008-9-6 15:06:42
|
只看该作者
But this is not the only way to build a touch screen, and nor was it the first. Bill Buxton, an adjunct professor of computer design and interaction at the University of Toronto and a principal researcher at Microsoft Research, says IBM was working on infra-red touch screens as early as 1965. These are based on a grid of invisible infra-red beams that criss-cross the surface of a screen. When a finger touches the screen, it breaks a horizontal and a vertical beam, which reveals its position.
This kind of touch screen was used in a computer-assisted instruction system, called PLATO IV, that was developed in the late 1960s at the University of Illinois at Urbana-Champaign, and released in 1972. It allowed students to answer questions by touching the screen, and was a genuine “touch” screen, because there was no need to apply pressure to the screen. “Surface acoustic-wave” touch screens work in a similar way, with beams of ultrasound rather than infra-red light.
The iPhone uses yet another technology, called a capacitive touch screen, which has even more distant and unusual origins. As far back as 1953 Hugh Le Caine, a Canadian pioneer of electronic music, was developing capacitive sensors for an early synthesiser, called the Sackbut, in which the position of his fingers controlled the timbre of the sound.
A capacitive touch screen is covered with a transparent conductive coating, to which a voltage is applied, establishing an electric field across the screen. When a finger touches the screen it disrupts this field, as the human body’s natural capacitance causes a local build-up of electric charge. Electrodes around the edges of the screen sense the change in charge distribution, allowing the finger’s position to be determined (see diagram).
In fact, the iPhone uses a more elaborate form of capacitive touch screen. A grid of electrodes divides its display into an array of hundreds of small, separate touch elements. Each of these can be triggered independently, enabling the iPhone to sense more than one finger at once, and making possible “multi-touch” features, such as pinching an image to shrink it. Multi-touch is also an old idea: the first prototype was cooked up in 1984 by Dr Buxton, but it was a touch pad, since it was not built into a screen. “The reason we didn’t make them display devices is not that we didn’t want to—it was because we couldn’t figure out how to make them cheap enough to put on a screen,” he says. For that he credits Bell Labs, which came up with the materials necessary to make a capacitive multi-touch device that could be combined with a computer display.
You can touch this
If touch screens have been around for so long, why did they not take off sooner? The answer is that they did take off, at least in some markets, such as point-of-sale equipment, public kiosks, and so on. In these situations, touch screens have many advantages over other input methods. That they do not allow rapid typing does not matter; it is more important that they are hard-wearing, weatherproof and simple to use. “In a museum, if you can’t figure out how to use an input device, you aren’t going to use it,” says Joel Kent, a senior scientist at Elo TouchSystems.
But breaking into the consumer market was a different matter entirely. Some personal digital assistants, or PDAs, such as the Palm Pilot, had touch screens. But they had little appeal beyond a dedicated band of early adopters, and the PDA market has since been overshadowed by the rise of advanced mobile phones that offer similar functions, combined with communications. Furthermore, early PDAs did not make elegant use of the touch-screen interface, says Dr Buxton. “When there was a touch interaction, it wasn’t beautiful,” he says.
That is why the iPhone matters: its use of the touch screen is seamless, intuitive and visually appealing. When scrolling quickly through lists, for example, the lists keep moving, apparently under their own momentum. On-screen objects behave in physically realistic ways. “Apple did an outstanding job with the iPhone in every aspect,” says Dr Buxton. “People are starting to demand the same quality of design: they don’t just want function.”
Until recently, the computing power and graphics capabilities of desktop computers, let alone hand-held devices, were not good enough for elegant touch-screen interfaces to work, says Jeff Han, founder of Perceptive Pixel, a touch-screen spin-out from New York University’s Courant Institute of Mathematical Sciences. And even if they had been sufficient, the public might not have been ready for such interfaces. “In the 1990s people were still getting used to Windows 95,” he says. “But right now the public is ready—even the most lay person can use a mouse.” |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?注册
x
|