<TR>
<TD >
<DIV>
<P ><FONT face="Times New Roman"> z </FONT></P>
<P ><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape></P>
<P ><o:p><FONT face="Times New Roman"> </FONT></o:p></P>
<P ><o:p><FONT face="Times New Roman"> </FONT></o:p></P>
<P ><FONT face="Times New Roman"> o</FONT></P>
<P ><o:p><FONT face="Times New Roman"> </FONT></o:p></P>
<P ><FONT face="Times New Roman">x</FONT></P></DIV></TD></TR></TABLE></v:textbox></v:shape></v:group>è<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman"> </FONT><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape><o:p></o:p></P>
<P ><v:line><v:stroke startarrow="block" dashstyle="dash"><FONT face="Times New Roman"></FONT></v:stroke></v:line><v:line><v:stroke startarrow="block"><FONT face="Times New Roman"></FONT></v:stroke></v:line><v:line><v:stroke endarrow="block"><FONT face="Times New Roman"></FONT></v:stroke></v:line><v:line><v:stroke endarrow="block" startarrow="block"><FONT face="Times New Roman"></FONT></v:stroke></v:line><FONT face="Times New Roman"> <o:p></o:p></FONT></P>
<P ><o:p><FONT face="Times New Roman"> </FONT></o:p></P>
<P ><FONT face="Times New Roman"> </FONT><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape></P><BR clear=all>
<P >例<FONT face="Times New Roman">5</FONT>.设<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape>是以<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape>为边界的光滑曲面,试求连续可微函数<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape>使曲面积分<o:p></o:p></P>
<P ><FONT face="Times New Roman"> </FONT><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape>与曲面<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape>的形状无关。<o:p></o:p></P>
<P >解:以<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape>为边界任作两个光滑曲面<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape>,<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape>的法向量指向同一侧。记<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape>为<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape>所围闭曲面,取外侧,<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape>所围区域为口。依题意<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape>,<FONT face="Times New Roman">(</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape>的反向<FONT face="Times New Roman">)<o:p></o:p></FONT></P>
<P >由高斯定理<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><o:p></o:p></P>
<P >è<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman"> </FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><o:p></o:p></P>
<P ><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape>代入上式<o:p></o:p></P>
<P ><FONT face="Times New Roman">==</FONT>〉<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><o:p></o:p></P>
<P ><FONT face="Times New Roman">==</FONT>〉<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape><FONT face="Times New Roman"> ==</FONT>〉<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman"> </FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape></P>